cbse Iguess $^{\text {g }}$

http://www.cbseguess.com/

Sample Paper - 2014
 Class - X
 Subject - Mathematics

From this semester there is little change in pattern.

So students are advised to have sufficient practice \& be quick to your answers.
Section A has 4 questions of 1 mark each. \qquad (4×1)

Section A has 6 questions of 2 mark each \qquad (6 x 1)

Section A has 10 questions of 3 mark each..

Section A has 11 questions of 4 mark each. \qquad . 11×1)

Section - A

1. For what possible value of $\mathrm{n}, a^{2 n}-b^{2 n}$ is divisible by $a-b$.
2. (i) The graph of $x=0$ is \qquad -.
(ii)The equation of x-axis is \qquad _.
3. The algebraic sum of the deviations of a frequency distribution from its mean is (a) 0 (b) always positive (c) always negative (d) a non-zero number.
4. ABC is a right triangle right angled at C . D is the mid-point of $\mathrm{BC} . \angle A B C=\theta, \angle A D C=\phi$ Show that $\frac{\tan \theta}{\tan \phi}=\frac{1}{2}$.

Section -B

5. $\quad \alpha \& \frac{1}{\alpha}$ are the zeros of the polynomial $4 x^{2}-2 x+(k-4)$. Find the value of ' k '.
6. In $\triangle A B C, \angle B=2 \angle C$ \& the bisector of $\angle B$ intersects $A C$ at D. Prove that $\frac{B D}{D A}=\frac{B C}{B A}$.
7. If $5 x=\operatorname{Sec} \theta \& \frac{5}{x}=\tan \theta$ find $5\left(x^{2}-\frac{1}{x^{2}}\right)$
8. If $\sqrt{3} \cot ^{2} \theta-4 \cot \theta+\sqrt{3}=0$ then find the value of $\cot ^{2} \theta+\tan ^{2} \theta$.
9. If two numbers are in the ratio $3: 4 \&$ their HCF is 6 . Find the numbers $\&$ their LCM.
10. Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta$ can never be less than 2 .

Section - C

close Sguess $^{\text {g }}$

http://www.cbseguess.com/

11. A rectangular field is $150 \mathrm{~m} x 60 \mathrm{~m}$. Two cyclists $A \& R$ start together \& can cycle at speed of $21 \mathrm{~m} / \mathrm{min}$. \& $28 \mathrm{~m} / \mathrm{min}$, respectively. They cycle along the rectangular track, around the field from the same point \& at the same movement. After how many minutes will they meet again at the starting point?
12. If α, β are the zeros of the quadratic polynomial $p(s)=3 s^{2}-6 s+4$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3 \alpha \beta$.
13. A jeweler has bars of 18 -carat gold \& 12 -carat gold. How much of each must be melted together to obtain a bar of 16 -carat gold, weighing 120 gm .
14. Solve for ' p ' \& ' q ' $2^{p}+3^{q}=17 \quad 2^{p+2}-3^{q+1}=5$.
15. If $a \operatorname{Sin} \theta+b \operatorname{Cos} \theta=c$ Prove that $a \operatorname{Cos} \theta-b \operatorname{Sin} \theta=\sqrt{a^{2}+b^{2}-c^{2}}$.
16. $\mathrm{PA}, \mathrm{QB} \& \mathrm{RC}$ are each \perp to AC . Prove that $\frac{1}{x}+\frac{1}{z}=\frac{1}{y}$.
a.

17. The mean of 8 observations is 4.5 \& the mean of another 4 observations is 6 . Find the mean of another 12 observations.
18. (i)A group of 10 items has arithmetic mean 6 . If the arithmetic mean of 4 of these items is 7.5 , find the mean of the remaining items.
(ii)Given Mean=31.04 \& Median=30.625 of a frequency distribution, find mode of this distribution.
19. 6 bells commence tolling together \& toll at intervals of $2,4,6,8,10 \& 12 \mathrm{sec}$, respectively. In 30 min, how many times do they toll together?
20. Find the greatest 6 -digit number which is completely divisible by $30,40 \& 50$.
Section -D
21. A men sold a chair and a table together for ₹Rs 1520 thereby making a profit of 25% on the chair and 10% on the table. By selling them together for ₹Rs 1535, he would have made a profit of 10% on the chair and 25% on the table. Find the cost price of each.
22. If one zero of the polynomial $a x^{2}+b x+c$ is triple of the other, then show that $3 b^{2}=16 a c$.
23. In any $\triangle \mathrm{ABC}$ prove that $\tan \tan \frac{A+B-C}{2}=\cot C$.
24. Prove that : $2\left(\operatorname{Sin}^{6} \theta+\operatorname{Cos}^{6} \theta\right)-3\left(\operatorname{Sin}^{4} \theta+\operatorname{Cos}^{4} \theta\right)+1=0$

close Sguess $^{\text {g }}$

http://www.cbseguess.com/

25. $3 \operatorname{Sin} \theta+5 \operatorname{Cos} \theta=5$ Prove that $5 \operatorname{Sin} \theta-3 \operatorname{Cos} \theta= \pm 3$
26. $P \& Q$ respectively are mid-points of the sides $C A \& C B$ of a right triangle $A B C$, right angled at C. Prove that (i) $4 A Q^{2}=4 A C^{2}+B C^{2}$ (ii) $4 B P^{2}=4 B C^{2}+A C^{2}$ (iii) $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$.
27. Prove that the sum of squares of diagonals of parallelogram is equal to the sum of squares of sides of parallelogram.
28. Prove that : $\frac{1-\operatorname{Sec}^{4} \theta-\operatorname{Tan}^{4} \theta}{1-\operatorname{Sec}^{2} \theta}=2 \operatorname{Sec}^{2} \theta$
29. The median of the data is 525 . Find $f_{1} \& f_{2}$ if the sum of frequencies is 100 .

Class	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$	$500-600$	$600-700$	$700-800$	$800-900$	$900-1000$
Frequency	2	5	f_{1}	12	17	20	$\mathrm{~F}_{2}$	9	7	4

30. If $(\mathrm{n}-\mathrm{k})$ is a factor of the polynomials $x^{2}+\mathrm{px}+\mathrm{q} \& x^{2}+\mathrm{m} x+n$. Prove that $\mathrm{k}=\mathrm{n}+\frac{n-q}{m-p}$
31. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Extra questions

32. If $7 \operatorname{cosec} \varphi-3 \cot \varphi=7$, prove that $7 \cot \varphi-3 \operatorname{cosec} \varphi=3$.
33. If $\operatorname{Sec} \varphi+\operatorname{Tan} \varphi=4$ find $\sin \varphi, \cos \varphi$
34. A's present age to the B's present age is $7: 9.12$ years ago, their ages were in the ratio $3: 5$. When would the ratio of the ages be 6:7. (Solve using two variables)
35. Prove that $\sum\left(x_{i}-\bar{x}\right)=0$

Name Harsharanjit Kanda
No calls between 1 p.m. to 10:30 p.m.
Prefer to Send your querries at
vishvas_1@ymail.com
http://www.cbseguess.com/

