Sample Paper - 2014 Class - X Subject - Mathematics

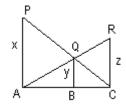
From this semester there is little change in pattern.

So students are advised to have sufficient practice & be quick to your answers.

Section	n A has 4 questions of 1 mark each (4 x 1)
Section	n A has 6 questions of 2 mark each(6 x 1)
Section	n A has 10 questions of 3 mark each (10 x 1)
Section	n A has 11 questions of 4 mark each(11 x 1)
	Section - A
1.	For what possible value of n, $a^{2n} - b^{2n}$ is divisible by a-b.
2.	(i) The graph of x=0 is (ii) The equation of x-axis is
3.	The algebraic sum of the deviations of a frequency distribution from its mean is (a) 0 (b) always positive (c) always negative (d) a non-zero number.
4.	ABC is a right triangle right angled at C. D is the mid-point of BC. $\angle ABC = \theta$, $\angle ADC = \phi$ Show that $\frac{\tan \theta}{\tan \phi} = \frac{1}{2}$
	Section -B
5.	$\alpha \& \frac{1}{\alpha}$ are the zeros of the polynomial $4x^2 - 2x + (k-4)$. Find the value of 'k'.
6.	In $\triangle ABC$, $\angle B=2\angle C$ & the bisector of $\angle B$ intersects AC at D. Prove that $\frac{BD}{DA}=\frac{BC}{BA}$.
_	$\frac{5}{2}$

- 7. If $5x = \sec \theta \& \frac{5}{x} = \tan \theta \text{ find } 5\left(x^2 \frac{1}{x^2}\right)$
- 8. If $\sqrt{3} \cot^2 \theta 4 \cot \theta + \sqrt{3} = 0$ then find the value of $\cot^2 \theta + \tan^2 \theta$.
- 9. If two numbers are in the ratio 3:4 & their HCF is 6. Find the numbers & their LCM.
- 10. Prove that $sec^2\theta + cosec^2\theta$ can never be less than 2.

Section -C



http://www.cbseguess.com/

- 11. A rectangular field is 150mx60m. Two cyclists A & R start together & can cycle at speed of 21m/min. & 28 m/min, respectively. They cycle along the rectangular track, around the field from the same point & at the same movement. After how many minutes will they meet again at the starting point?
- 12. If α , β are the zeros of the quadratic polynomial $p(s) = 3s^2 6s + 4$, find the value of

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$$
.

- 13. A jeweler has bars of 18-carat gold & 12-carat gold. How much of each must be melted together to obtain a bar of 16-carat gold, weighing 120 gm.
- 14. Solve for 'p' & 'q' $2^p + 3^q = 17$ $2^{p+2} 3^{q+1} = 5$.
- 15. If $aSin\theta + bCos\theta = c$ Prove that $aCos\theta bSin\theta = \sqrt{a^2 + b^2 c^2}$.
- 16. PA, QB & RC are each \perp to AC. Prove that $\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$

- •
- 17. The mean of 8 observations is 4.5 & the mean of another 4 observations is 6. Find the mean of another 12 observations.
- 18. (i)A group of 10 items has arithmetic mean 6. If the arithmetic mean of 4 of these items is 7.5, find the mean of the remaining items.
 - (ii) Given Mean=31.04 & Median=30.625 of a frequency distribution, find mode of this distribution.
- 19. 6 bells commence tolling together & toll at intervals of 2, 4, 6, 8, 10 & 12 sec, respectively. In 30 min, how many times do they toll together?
- 20. Find the greatest 6-digit number which is completely divisible by 30, 40 & 50.

Section -D

- 21. A men sold a chair and a table together for ₹Rs 1520 thereby making a profit of 25% on the chair and 10% on the table. By selling them together for ₹Rs 1535, he would have made a profit of 10% on the chair and 25% on the table. Find the cost price of each.
- 22. If one zero of the polynomial $ax^2 + bx + c$ is triple of the other, then show that $3b^2 = 16ac$.
- 23. In any \triangle ABC prove that $\tan \frac{A+B-C}{2} = \cot C$.
- 24. Prove that : $2(Sin^{6}\theta + Cos^{6}\theta) 3(Sin^{4}\theta + Cos^{4}\theta) + 1 = 0$

www.cbseguess.com

http://www.cbseguess.com/

- 25. $3Sin\theta + 5Cos\theta = 5$ Prove that $5Sin\theta 3Cos\theta = \pm 3$
- 26. P &Q respectively are mid-points of the sides CA & CB of a right triangle ABC, right angled at C. Prove that (i) $4AQ^2 = 4AC^2 + BC^2$ (ii) $4BP^2 = 4BC^2 + AC^2$ (iii) $4(AQ^2 + BP^2) = 5AB^2$.
- 27. Prove that the sum of squares of diagonals of parallelogram is equal to the sum of squares of sides of parallelogram.
- 28. Prove that : $\frac{1 Sec^4\theta Tan^4\theta}{1 Sec^2\theta} = 2Sec^2\theta$
- 29. The median of the data is 525. Find $f_1 \& f_2$ if the sum of frequencies is 100.

Class	0-100	100-200	200-300	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
Frequency	2	5	f_1	12	17	20	F ₂	9	7	4

- 30. If (n-k) is a factor of the polynomials $x^2 + px + q & x^2 + m x + n$. Prove that $k = n + \frac{n-q}{m-p}$
- 31. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Extra questions

- 32. If $7 \csc \varphi 3 \cot \varphi = 7$, prove that $7 \cot \varphi 3 \csc \varphi = 3$.
- 33. If Sec ϕ +Tan ϕ =4 find sin ϕ , cos ϕ
- 34. A's present age to the B's present age is 7 : 9. 12 years ago, their ages were in the ratio 3:5. When would the ratio of the ages be 6 : 7. (Solve using two variables)
- 35. Prove that $\sum (x_i \overline{x}) = 0$

Name Harsharanjit Kanda

No calls between 1 p.m. to 10:30 p.m.

Prefer to Send your querries at

vishvas 1@ymail.com

